
M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Resource for Engineering Data in STEP

Part 50: Mathematical Constructs

Philip G. Kraushar, Ph. D.
The Boeing Company
Last revised: Nov 3, 1999



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Scope of Part 50

“This part of ISO 10303 specifies the resource constructs for the explicit
representation of mathematical structures and data related to properties
of a product.

The following are within the scope of the mathematical functions schema:
--- multi-dimensional tables;
--- mathematical expressions;
--- mathematical functions;
--- mathematical spaces.

The following are outside the scope of the mathematical functions schema
in this part of ISO 10303:
--- the context of application;
--- the physical units;
--- the non-mathematical semantics.”



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

The Big Picture

EXPRESS
objects Mathematical

objects

Mathematical language
(expressions)

EXPRESS language

Part 50 schema

Part 50
objects

defines
and
denotes

denotes

represents

representsdefines

instance of



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Status: Done

• Clause 7 (mathematical_representation_schema) extracted from
Part 42 edition 2 CD and embedded in a new Part 50 (as suggested
by the Japanese ballot comment)

• Proposed name of Part 50: Mathematical Constructs
• Proposed Part 50 schema name: mathematical_functions_schema
• Major structural change: All entity types now subtyped from

ISO13584-20 (PLIB) expression supertypes (as suggested by
discussion based on the French ballot comment)

• New draft document completed (218 pages) and on SOLIS as
WG12 N442.

• All ballot comments that were in scope for this document have
been addressed.



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Status: Not Done

• EXPRESS compilations
• QC revision by author after careful study of SD

• Further discussion of ballot comment resolutions and other
non-consensus issues by “mathrep” exploder

In particular,
• Connections from other 40-series Parts
• Use by new AP’s
• Validation?
• Extension to cover material in original proposal?
• Extension to support functions involving EXPRESS entities

(for Parametrics, for example)?
(These were out of scope for the DIS document itself.)



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Extensions to generic_expressions_schema

• Added quantifier_expression as subtype of
multiple_arity_generic_expression to deal with logical quantifiers

• Added bound_variable_semantics and free_variable_semantics as
instantiable subtypes of variable_semantics

• Added functions free_variables_of() and is_constant_expression()
• Possibly add dependent_variable_definition as a subtype of

unary_generic_expression with connections to variable_semantics
(discuss in context of later example)

From Lillehammer



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Additions caused by integration with PLIB expressions

• Added maths_variable and four special subtypes with dual
inheritance from maths_variable and the four instantiable subtypes
of ISO13584_expressions_schema.variable, respectively

• Added five elementary subtypes of generic_literal: logical_literal,
binary_literal, maths_enum_literal, real_tuple_literal, and
integer_tuple_literal

• Added one non-elementary subtype of generic_literal -
atom_based_literal - and supporting types: atom_based_value and
atom_based_tuple

• Added functions is_maths_expression() and values_space_of()
• Added function_application and elementary_function_application as

subtypes of multiple_arity_generic_expression

From Lillehammer



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Entity maths_space Changes

• Subtyped from generic_expression
• All subtypes of maths_space subtyped from generic_literal
• Space (Set) operations (e.g. union, intersection, difference,

power set, Cartesian product) not added because not needed
and raised too many new issues.

• New subtypes of maths_space:
• finite_space
• function_space
• representable_spaces_space

From Lillehammer



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Entity maths_function Changes (1 of 2)

• Subtyped from generic_expression
• All instantiable subtypes are subtyped from generic_literal,

unary_generic_expression or multiple_arity_generic_expression
• Domain and range attributes changed to derived attributes
• Parameters attribute removed (replaced by free_variables_of())
• Added new subtypes (in response to ballot comments):

• imported_curve_function
• imported_surface_function
• imported_volume_function
• MathML_function

• Replaced subtype compound_function with composed_function,
function_application, elementary_function_application, and
expression_function

From Lillehammer



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Entity maths_function Changes (2 of 2)

• Improved names:
• linear_function ==> homogeneous_linear_function
• affine_function ==> general_linear_function
• general_b_spline_function ==> b_spline_function
• table_function ==> explicit_table_function
• sparse_matrix ==> basic_sparse_matrix

• Changed:
• simplest_…_array ==> listed_…_data
• skew_sym_matrix eliminated (now handled by

skew_symmetric attribute of symmetric matrix)
• symmetric_banded_matrix (now subtype of

symmetric_matrix)

From Lillehammer



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Changes since Lillehammer

• Added dependent_variable_definition as subtype of
unary_generic_expression

• Removed enumeration_space, aggregate_space,
representable_spaces_space, integer_interval, and real_interval

• Changed product_space and tuple_space into select types
• Removed elementary_function_application
• Added finite_function, expression_denoted_function, and

imported_point_function
• Split selection_insertion_function from selection_function
• Inserted abstract supertype application_defined_function above

mathml_function as general purpose AP extension mechanism.
• Renamed expression_function to abstracted_expression_function
• Revised list of elementary functions
• Will add composed_function_application



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Example: Adding Bessel functions

Suppose an AP needs the Bessel functions of the first and second kinds. The
subtype of application_defined_function to support this can be defined as follows:

ENTITY bessel_function
SUBTYPE OF (application_defined_function, generic_literal);
SELF\application_defined_function.parameters : LIST [3:3] OF

NUMBER;
DERIVE

SELF\application_defined_function.explicit_domain : tuple_space
:= one_tuples_of(the_complex_numbers);

SELF\application_defined_function.explicit_range : tuple_space
:= one_tuples_of(the_complex_numbers);

WHERE
WR1: (SELF\application_defined_function.parameters[1] = 1) OR

(SELF\application_defined_function.parameters[1] = 2);
WR2: is_real(SELF\application_defined_function.parameters[2])

AND is_real(SELF\application_defined_function.parameters[3]);
END_ENTITY;



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Example: Composed functions

H(x) = h οοοο g οοοο f (x) = h ( g ( f (x) ) )

is represented by entity type composed_function as

#2000=COMPOSED_FUNCTION((#f, # g, # h));

K(x) = k ( f(x), g(x), h(x) )

is represented by entity type composed_function_application as

#2001=COMPOSED_FUNCTION_APPLICATION( *, #k, (# f, # g, # h));



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Example: expression_denoted_function (1 of 2)

Consider the informal mathematical definition for the one-parameter family F of
rotation matrices in the plane:

F(θθθθ) = cos( θθθθ) -sin( θθθθ)
sin( θθθθ) cos( θθθθ)

In order to recognize the expression F(ππππ/6) as an instance which could be used as
the matrix-valued operand attribute of, say, a homogeneous_linear_function, it must
first be recognized as an instance of maths_function. As constructed, the instance
representing F(ππππ/6) is an instance of function_application. The entity type function_-
application cannot be a subtype of maths_function because many of its instances do
not represent mathematical functions. Instead, the nature of this particular instance of
function application is recognized by wrapping it as an expression_denoted_function
instance as follows:

[ ]



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Example: expression_denoted_function (2 of 2)

#1600=ELEMENTARY_SPACE(.ES_REALS.);

#1601=MATHS_REAL_VARIABLE(#1600,’theta’);

#1602=COS_FUNCTION(#1601);

#1603=SIN_FUNCTION(#1601);

#1604=MINUS_FUNCTION(#1603);

#1605=LISTED_DATA(1,(#1602,#1603,#1604,#1602),#1600);

#1606=STANDARD_TABLE_FUNCTION(1,(2,2),#1605,1,.BY_ROWS.);

#1607=ABSTRACTED_EXPRESSION_FUNCTION((#1606,#1601));

#1608=REAL_LITERAL(0.5235987);

#1609=FUNCTION_APPLICATION(*,#1607,(#1608));

#1610=EXPRESSION_DENOTED_FUNCTION(#1609);

R
θθθθ
cos( θθθθ)
sin( θθθθ)
-sin( θθθθ)
1D table
matrix
F
ππππ/6
F(ππππ/6)
2D table



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Example: 2D Grid

Given a list or real numbers u i, i=1,…,10 and a list v j, j=1,…,12,
form the matrix of two-dimensional points (i.e. ordered pairs
of real numbers) [(u i, vj)].

#1001=LISTED_REAL_DATA(1,*,( u1,u2,u3,u4,u5,u6,u7,u8,u9,u10));
#1002=LISTED_REAL_DATA(1,*,( v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12));
#1003=FINITE_INTEGER_INTERVAL(1,10);
#1004=FINITE_INTEGER_INTERVAL(1,12);
#1005=MATHS_INTEGER_VARIABLE(#1003,’i’);
#1006=MATHS_INTEGER_VARIABLE(#1004,’j’);
#1007=FUNCTION_APPLICATION(*,#1001,(#1005));
#1008=FUNCTION_APPLICATION(*,#1002,(#1006));
#1009=ELEMENTARY_FUNCTION(.EF_ENTUPLE.);
#1010=FUNCTION_APPLICATION(*,#1009,(#1007,#1008));
#1011=ABSTRACTED_EXPRESSION_FUNCTION((#1010,#1005,#1006));

Instance #1011 represents the requested matrix.
Two instances of ENVIRONMENT and two instances of BOUND_VARIABLE_SEMANTICS not shown.



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Example: 2D Grid notes

#1001= 1D table function u
#1002= 1D table function v
#1003= {n εεεε Z | 1 <= n <= 10}
#1004= {n εεεε Z | 1 <= n <= 12}
#1005= a variable i ranging over the interval 1,..,10
#1006= a variable j ranging over the interval 1,..,12
#1007= u(i), or, more commonly, u i
#1008= v(j), or, more commonly, v j
#1009= the elementary function which takes any number of

arguments and creates an ordered tuple of them
#1010= expression ( u i , v j )
#1011= 2D table function [( u i , v j )]



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Example: 2D Grid (simplified)

Given a list or real numbers u i, i=1,…,10 and a list v j, j=1,…,12,
form the matrix of two-dimensional points (i.e. ordered pairs
of real numbers) [(u i, vj)].

#1001=LISTED_REAL_DATA(1,*,( u1,u2,u3,u4,u5,u6,u7,u8,u9,u10));
#1002=LISTED_REAL_DATA(1,*,( v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12));
#1003=FINITE_INTEGER_INTERVAL(1,10);
#1004=FINITE_INTEGER_INTERVAL(1,12);
#1009=ELEMENTARY_FUNCTION(.EF_ENTUPLE.);
#1021=SELECTION_FUNCTION((#1003,#1004),(1));
#1022=SELECTION_FUNCITON((#1003,#1004),(2));
#1023=COMPOSED_FUNCTION((#1021,#1001));
#1024=COMPOSED_FUNCTION((#1022,#1002));
#1025=COMPOSED_FUNCTION_APPLICATION(*,#1009,(#1023,#1024));

Instance #1025 represents the requested matrix.

The two instances of ENVIRONMENT and two instances of BOUND_VARIABLE_SEMANTICS are also
eliminated in this case.



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Example: 2D Grid (simplified) notes

#1001= 1D table function u
#1002= 1D table function v
#1003= {n εεεε Z | 1 <= n <= 10}, call it [1,10]
#1004= {n εεεε Z | 1 <= n <= 12}, call it [1,12]
#1009= E, the elementary function which takes any number of

arguments and creates an ordered tuple of them
#1021= P1 projection onto 1st coordinate from [1,10] x [1,12]
#1022= P2 projection onto 2nd coordinate from [1,10] x [1,12]
#1023= u οοοο P1
#1024= v οοοο P2
#1025= E( u οοοο P1, v οοοο P2) = 2D table function [( u i , v j )]



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Example: 3D Grid on a Surface

Represent the grid of three-dimensional points (i.e. ordered
triples of real numbers) obtained by evaluating a surface on
the 2D grid: [S(u i,vj)]

#1101=IMPORTED_SURFACE_FUNCTION(#S,#1102);
#1102=UNIFORM_TUPLE_SPACE(#1103,2);
#1103=FINITE_REAL_INTERVAL(0.0,.CLOSED.,1.0,.CLOSED.);
#1104=REPACKAGING_FUNCTION(#1101,.RO_UNWRAP_TUPLE.,

.RO_NOCHANGE.,0);
#1105=COMPOSED_FUNCTION((#1011,#1104));

#1105 is the requested 3D grid on the surface. The
REPACKAGING_FUNCTION fixes the subtle discrepancy that
the output of the 2D grid function is one ordered pair of reals
and the input of the surface’s parametric function is two reals.



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Example: Adjoin Continuous Pressure and
Temperature Distributions to a Surface

Assume the numerical values representing Pressure and
Temperature have been defined by maths_function instances
P(u,v) and T(u,v), where the domains are the same as those of
S(u,v) (the surface parametric function) and the ranges are
real numbers.

#1201=MATHS_REAL_VARIABLE(#1103,’U’);
#1202=MATHS_REAL_VARIABLE(#1103,’V’);
#1203=FUNCTION_APPLICATION(*,# P,(#1201,#1202));
#1204=FUNCTION_APPLICATION(*,# T,(#1201,#1202));
#1205=FUNCTION_APPLICATION(*,#1104,(#1201,#1202));
#1206=FUNCTION_APPLICATION(*,#1009,(#1203));
#1207=FUNCTION_APPLICATION(*,#1009,(#1204));
#1208=ELEMENTARY_FUNCTION(.EF_CONCAT_T.);
#1209=FUNCTION_APPLICATION(*,#1208,(#1205,#1206));
#1210=FUNCTION_APPLICATION(*,#1208,(#1209,#1207));
#1211=ABSTRACTED_EXPRESSION_FUNCTION((#1210,#1201,#1202));

#1211 represents a function from the unit square into 5D space.
Two instances of ENVIRONMENT and two instances of BOUND_VARIABLE_SEMANTICS not shown.



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Example: Adjoin Continuous Pressure and
Temperature Distributions to a Surface (simplified)

Assume the numerical values representing Pressure and
Temperature have been defined by maths_function instances
P(u,v) and T(u,v), where the domains are the same as those of
S(u,v) (the surface parametric function) and the ranges are
real numbers.

#1009=ELEMENTARY_FUNCTION(.EF_ENTUPLE.);
#1104=/* the repackaged surface function S(u,v) */
#1208=ELEMENTARY_FUNCTION(.EF_CONCAT_T.);
#1221=COMPOSED_FUNCTION((#P,#1009));
#1222=COMPOSED_FUNCTION((#T,#1009));
#1223=COMPOSED_FUNCTION_APPLICATION(*,#1208,(#1104,#1221));
#1224=COMPOSED_FUNCTION_APPLICATION(*,#1208,(#1123,#1222));

#1224 represents a function from the unit square into 5D space
(x, y, z, P, T).

The two instances of ENVIRONMENT and two instances of BOUND_VARIABLE_SEMANTICS are also
eliminated in this case.



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Variation requested by Ed Stanton

Assume the numerical values representing Pressure and
Temperature have been defined throughout the space occupied
by the surface S(u,v) by maths_function instances P(x,y,z)
and T(x,y,z) and that their ranges are real numbers.

#1009=ELEMENTARY_FUNCTION(.EF_ENTUPLE.);
#1104=/* the repackaged surface function S(u,v) */
#1208=ELEMENTARY_FUNCTION(.EF_CONCAT_T.);
#1231=COMPOSED_FUNCTION((#1104,#P,#1009));
#1232=COMPOSED_FUNCTION((#1104,#T,#1009));
#1233=COMPOSED_FUNCTION_APPLICATION(*,#1208,(#1104,#1231));
#1234=COMPOSED_FUNCTION_APPLICATION(*,#1208,(#1233,#1232));

#1234 represents a function from the unit square into 5D space.



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Example: Coefficient of Lift (1 of 2)

A ‘property’ of a Boeing 737-700 is how a certain component
of the aerodynamic coefficient of lift depends on the angle of
attack and the angle of the wing flaps. Supposing that this
relationship were expressed using a b_spline_function, it
would look something like the following:

#1301=B_SPLINE_FUNCTION((#1302,#1303),#1304);
/* spline bases and coefficient table */

#1302=B_SPLINE_BASIS(2,(-10.0,-10.0,-10.0,-5.0,...,35.0));
/* degree and 23 knots for first input */

#1303=B_SPLINE_BASIS(3,(0.0,...,30.0));
/* degree and 19 knots for second input */

#1304=STANDARD_TABLE_FUNCTION(0,(20,15),#1305,0,.BY_ROWS.);
/* structure of table of coefficients */

#1305=LISTED_REAL_DATA(0,*,(0.134,...,0.753));
/* 300 coefficients */



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Example: Coefficient of Lift (2 of 2)

The previous slide defines the purely numerical relationship
between an input of an ordered pair of reals and an output of
a real. To connect this with the actual application via some
variables and their “semantics” in the style of PLIB 20, the
b_spline_function could be used as follows:

#1306=REPACKAGING_FUNCTION(#1301,.RO_WRAP_AS_TUPLE.,
.RO_NOCHANGE.,0);

#1307=MATHS_REAL_VARIABLE(#1309,’ANGLE_OF_ATTACK’);
#1308=MATHS_REAL_VARIABLE(#1310,’FLAP_ANGLE’);
#1309=FINITE_REAL_INTERVAL(-10.0,.CLOSED.,35.0,.CLOSED.);
#1310=FINITE_REAL_INTERVAL(0.0,.CLOSED.,30.0,.CLOSED.);
#1311=FUNCTION_APPLICATION(*,#1306,(#1307,#1308));
#1312=DEPENDENT_VARIABLE_DEFINITION(#1311,’COEF_LIFT_BNAS’);

The last entity type allows expression outputs to be documented
in a manner like variables.



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Example: Equation

The ideal gas law states something like: PV = kT

#1501=REAL_INTERVAL_FROM_MIN(0.0,.CLOSED.);
#1502=MATHS_REAL_VARIABLE(#1501,’PRESSURE’);
#1503=MATHS_REAL_VARIABLE(#1501,’VOLUME’);
#1504=MATHS_REAL_VARIABLE(#1501,’TEMPERATURE’);
#1505=REAL_LITERAL(2.71E-5); /* not the correct number */
#1506=MULT_EXPRESSION((#1502,#1503));
#1507=MULT_EXPRESSION((#1505,#1504));
#1508=EQUALS_EXPRESSION((#1506,#1507));

The units of measurement, descriptions, connections
to the product, et cetera, are out of scope for this Part. They
might be handled via the “variable_semantics” entities tied to
each variable by the PLIB 20 schemas. Or by a
maths_expression_item as discussed later in this presentation.
Or by a Part 107 mechanism.



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Example: Sparse Matrix

0.0 2.1 3.6 0.0 0.0 0.0
5.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 -7.1 0.0 0.0 0.0
0.0 0.0 0.0 -8.5 2.3 1.0
0.0 2.0 0.0 0.0 0.0 0.0

#20=BASIC_SPARSE_MATRIX(1,(5,6),(#21,#22,#23),0.0,.BY_ROWS.);
#21=LISTED_REAL_DATA(1,*,(1,3,4,5,8,9));
#22=LISTED_REAL_DATA(1,*,( 2, 3, 1, 3, 4, 5, 6, 2));
#23=LISTED_REAL_DATA(1,*,(2.1,3.6,5.0,-7.1,-8.5,2.3,1.0,2.0));

Spacing added to #22 to show correspondence with #23.



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Issue: Integration with STEP

• How is Part 50 to be used to represent complex properties of
products?

• There are at least three potential answers:
• PLIB 20 approach using entity types “variable_semantics”

and “environment” to connect with expression variables.
• Part 107 (Engineering Analysis Core Model) approach. See

David Leal.
• Just for discussion, a fairly straightforward way to create

representation items with appropriate engineering context
is sketched on the next two slides. This appears to allow
use of the Part 50 entity instances to represent complex
property values without any additional changes to STEP
Generic Resources.



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Possible representation items from Part 50

representation_item

maths_space_item

maths_function_item

maths_expression_item

maths_space

maths_space_use

maths_function

generic_expression

use

space

domain_
item

range_
item

function

expression

values_
space_
item



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Possible maths_space_use structure

maths_space_use textdescription

measure_use unitunits_used

parameter_use

nonnumeric_use

uniform_use_tuple

listed_use_tuple

extended_use_tuple

repetition_count
base_use

component_uses

base_use

extension_use

1



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Issue: Logical vs. Computational Variables

Computational Variables:
• Have a current value
• Current value changes during a computation by means of

assignment operation
Logical Variables:

• Do not have a particular value, but have some space of
possible values

• Participate in processes of ‘Substitution’ by which new
expressions are created by means of replacement of a
variable by a constant or other expression

• Participate in processes of ‘Quantification’ by which new
expressions are created

Which kind were PLIB 20 variables intended to be?



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Issue: Elementary function redundancy (1 of 2)

• At first sight, there appear to be two ways to represent certain
elementary functions. For concreteness, consider the sine function:
• PLIB 20 has a sin_function entity type.
• Part 50 has an elementary_function entity type which represents the

real sine function when its attribute has the enumeration value
ef_sin_r.

• In fact, however, the PLIB 20 sin_function entity requires that the sine
function be applied to some operand. That is, it efficiently represents
the real-valued expression “sin (x)”, but not the sine function itself as
a single mathematical object.

• Many of the constructs in Part 50 operate directly on function objects.
• Uniformity of structure and use with the other elementary functions in

Part 50 which do not have PLIB 20 (or EXPRESS) counterparts favors
retaining the full set in Part 50.



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Issue: Elementary function redundancy (2 of 2)

• The elementary function objects of Part 50 are the mathematical ones,
which may differ subtly from the EXPRESS functions represented by
PLIB 20. Consider atan2 in Part 50 versus atan in EXPRESS.

• Some redundancy is harmless and convenient. Consider that a
representation for tan(x) is technically redundant since it can always
be expressed as sin(x)/cos(x). Consider that the expressions x+2, 2+x,
x+(3-1) are three of infinitely many ways to express essentially the
same thing.



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Issue: Strange generic literals

• Many entity types in Part 50 are subtyped from PLIB 20 abstract
supertype generic_literal. They do not appear to represent ‘literal’ data
values in any ordinary sense.

• The selection of an appropriate supertype in the PLIB 20 generic
expressions schema reduces to generic_literal by elimination. The
entity types in question, while complex in structure, are intended to
represent single mathematical objects. Consequently, they are not
subtypes of generic_variable, nor can they be subtypes of
unary_generic_expression, binary_generic_expression, or
multiple_arity_generic_expression, all of which could have variables as
operands. That leaves generic_literal. This is the supertype which
contains all the instances representing constants in the language of
expressions established by the
ISO13584_generic_expressions_schema.



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Issue: Sine function is a constant?

• “sin” denotes a single mathematical object. Hence, its role in
the language of mathematical expressions is that of a
constant.

• “sin(x)” denotes an indeterminate real number. It is an
expression created by applying the “sin” function to a real
variable “x”. In the language of mathematical expressions it
is a non-elementary construct of three simple elements.

• To say that “sin” is a constant and denotes a function is not
the same as saying that it is a constant function (although I
may well have carelessly said exactly that late in the day at
Lillehammer).



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Issue: Simple value redundancy

• There are two ways to represent all simple values and many
aggregate values in Part 50. For concreteness, consider the
mathematical real number three. In many Part 50 uses, this
mathematical object can be represented by the EXPRESS
language value “3.0”. In PLIB 20 expressions, however, it
must be represented by an instance of entity type
“real_literal” with attribute “the_value” containing “3.0”.

• This is a familiar and apparently unavoidable phenomenon
known to all designers of object-oriented languages. It is
impractical to dispense with the simple values and
impossible to make them behave exactly like objects.

• The presence of this redundancy introduces extra complexity
and probably some subtle inconsistencies.



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Issue: Functions operating with entity instances

• Problem: Entity instances are not mathematical objects:
• They are created, altered and destroyed.
• They exist only in the context of a schema and a computational

environment.
• These schemas are unknown to the Part 50 schema.
• Since a function creating an entity instance would create a different

instance each time it was called with the same inputs, such a
function is not a mathematical function.

• Solution:
• Create a mathematical model of EXPRESS schemas, computational

environment states and entity instances within such environments.
• Model computational events as mathematical functions from states

to states.
• Represent these mathematical models of schemas, states, and

functions in Part 50.



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

The Bigger Picture

EXPRESS
objects

Mathematical
objects

Mathematical language
(expressions)

EXPRESS language

Part 50 schema

Part 50
objects

defines
and
denotes

denotes

represents

representsdefines

instance of

Mathematical
model of EXPRESS
and its objects

represents schemas

represents states & instances

represents EXPRESS universe



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

A Critical Distinction

Informal mathematics does not usually distinguish a space X and
the space X 1 of one-tuples of elements of X. Part 50 finds that it
must maintain that distinction.

Consider a function f which takes two real numbers as inputs.
Also consider a function g which takes one ordered pair of real
numbers as input. What are the domains of f and g?

The average mathematician answers R 2 to both and is very
reluctant to admit there is a problem. The average computer
programmer will see immediately that these two functions have
different domains (a different “signature” in a programming
language).

The answer adopted by Part 50 is that the domain of f is R 2 and
the domain of g is (R 2)1 and that these are distinct spaces.

Supplementary



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

The Spline Knots Debate

• One list attribute
• Required form for evaluation
• Proposed for Part 50
• Equally reliable in fact
• Automatically translates to

nearest representable function
on receiving system in the
same case

• Would abandon consistency for
efficiency

• Continuity structure
insignificantly less apparent

• Two correlated list attributes
• Only occasionally used directly
• Used in geometry schema
• Claimed to be more reliable in

transmission
• Causes failure of transmission

in only case of different
behavior

• Would maintain consistency
across STEP parts

• Continuity structure more
apparent

There are two mathematically equivalent ways to describe the
knots for an input of a b_spline_function - the knot sequence
(with repetitions) and the breakpoints and multplicities.

Knot sequenceBreakpoints and multiplicities

Supplementary



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

CENTRAL FOCUS

f : X ---> Y

where f represents a mathematical function
taking inputs from the mathematical space X
and producing outputs in the mathematical
space Y.

Supplementary



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Math and User Levels

applies to and produces

applies to and produces

has member
domain

range

inputs

outputs
variable value

valuesfunction

MathFunction

Function-
WithContext

MathSpace

Variable

MathValue

ValueOfVariable

(i.e. anything)

Math:

User:String

label
units
description

String

description

Supplementary



M&CT Phil Kraushar STEP IBM-PC/01Jun99

Boeing Phantom Works
Mathematics & Computing Technology

Expressing Surface Intersection

U1 U4

U2

U2 R3

C

S(1,2)

S(3,4)

F

G

Supplementary


